Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit.
نویسندگان
چکیده
A number of sensory modalities most likely converge in the rat perirhinal cortex. The perirhinal cortex also interconnects with the amygdala, which plays an important role in various motivational and emotional behaviors. The neural pathway from the perirhinal cortex to the entorhinal cortex is considered one of the main paths into the entorhinal-hippocampal network, which has a crucial role in memory processes. To investigate the potential associative function of the perirhinal cortex with respect to sensory and motivational stimuli and the influence of the association on the perirhinal-entorhinal-hippocampal neurocircuit, we prepared rat brain slices including the perirhinal cortex, entorhinal cortex, hippocampal formation, and amygdala. We used an optical imaging technique with a voltage-sensitive dye to analyze 1) the spatial and functional distribution of inputs from the lateral nucleus of the amygdala to the perirhinal cortex; 2) the spread of neural activity in the perirhinal cortex after layers II/III stimulation, which mimics sensory input to the perirhinal cortex; and 3) the effect of associative inputs to the perirhinal cortex from both the lateral amygdaloid nucleus and layers II/III of the perirhinal cortex on the perirhinal-entorhinal-hippocampal neurocircuit. Following stimulation in the superficial layers of the perirhinal cortex, electrical activity only propagated into the entorhinal cortex when sufficient activation occurred in the deep layers of perirhinal area 35. We observed that single stimulation of either the perirhinal cortex or amygdala did not result in sufficient neural activation of the deep layers of areas 35 to provoke activity propagation into the entorhinal cortex. However, the deep layers of area 35 were depolarized much more strongly when the two stimuli were applied simultaneously, resulting in spreading activation in the entorhinal cortex. Our observations suggest that a functional neural basis for the association of higher-order sensory inputs and emotion-related inputs exists in the perirhinal cortex and that transfer of sensory information to the entorhinal-hippocampal circuitry might be affected by the association of that information with incoming information from the amygdala.
منابع مشابه
Amygdala input promotes the spread of excitatory neural activity from the perirhinal cortex to the entorhinal/hippocampal neurocircuit
† Brain Architecture Analysis Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan ‡ Graduate School Neurosciences Amsterdam, Research Institute Neurosciences, Department of Anatomy, Vrije Universiteit Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands § Systems Neuroscience, ...
متن کاملEnvironmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex.
If the hippocampus plays a role in the detection of novel environmental features, then novelty should be associated with altered hippocampal neural activity and perhaps also measures of neuroplasticity. We examined Fos protein expression within subregions of rat hippocampal formation as an indicator of recent increases in neuronal excitation and cellular processes that support neuroplasticity. ...
متن کاملHippocampal and subicular efferents and afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat.
Available evidence suggests there is functional differentiation among hippocampal and parahippocampal subregions and along the dorsoventral (septotemporal) axis of the hippocampus. The aim of this study was to characterize and compare the efferent and afferent connections of perirhinal areas 35 and 36, postrhinal cortex, and the lateral and medial entorhinal areas (LEA and MEA) with dorsal and ...
متن کاملمدل شبکه ی عصبی از نگاشت سلولهای شبکه به سلولهای مکانی
Abstract: Medial entorhinal cortex is known to be the hub of a brain system for navigation and spatial representation. These cells increase firing frequency at multiple regions in the environment, arranged in regular triangular grids. Each cell has some properties including spacing, orientation, and phase shift of the nodes of its grid. Entorhinal cortex is commonly perceived to be the major in...
متن کاملMesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region.
Despite neuropathological and electrophysiological evidence for the involvement of parahippocampal structures in temporal lobe epilepsy (TLE), little attention has been paid to morphometric measurements of these structures in patients with TLE. Using high resolution MRI, we previously showed that the volume of the entorhinal cortex was decreased in patients with TLE. The purpose of this study w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2003